Part Number Hot Search : 
4274DV5 SLA5058 AD7118UQ 122M31 K3210 LT110 12031 60000
Product Description
Full Text Search
 

To Download NCP4683 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  ? semiconductor components industries, llc, 2012 july, 2012 ? rev. 2 1 publication order number: NCP4683/d NCP4683 300 ma, low dropout regulator the NCP4683 is a cmos linear voltage regulator with 300 ma output current capability. the device has high output voltage accuracy, low supply current and high ripple rejection. the NCP4683 is easy to use, with output current fold ? back protection circuit included. a chip enable function is included to save power by lowering supply current. the line and load transient responses are very good, thus this regulator is suitable for use as a power supply for communication equipment. features ? operating input voltage range: 1.40 v to 5.25 v ? output voltage range: 0.8 v to 3.6 v (available in 0.1 v steps) ? output voltage accuracy: 1.0% (v out > 2.0 v) ? supply current: 50  a ? dropout voltage: 0.25 v (i out = 300 ma, v out = 2.8 v) ? high psrr: 70 db (f = 1 khz) ? line regulation: 0.02%/v typ. ? stable with ceramic capacitors: 1.0  f or more ? current fold back protection ? available in udfn4 1.0 x 1.0 mm, sc ? 70, sot23 packages ? these are pb ? free devices typical applications ? battery ? powered equipment ? networking and communication equipment ? cameras, dvrs, stb and camcorders ? home appliances vin vout ce gnd c1 c2 vin vout NCP4683x figure 1. typical application schematic 1  1  http://onsemi.com see detailed ordering, marking and shipping information in the package dimensions section on page 18 of this data sheet. ordering information xx, xxx, xxxx = specific device code m, mm = date code marking diagrams sot ? 23 ? 5 case 1212 sc ? 70 case 419a 1 udfn4 case 517br xx mm 1 xxx xmm xxx m http://onsemi.com
NCP4683 http://onsemi.com 2 current limit vref vin gnd ce vout NCP4683hxxxx current limit vref vou t vin gnd ce NCP4683dxxxx figure 2. simplified schematic block diagram pin function description pin no. udfn1010* pin no. sc ? 70 pin no. sot23 pin name description 1 4 5 v out output pin 2 3 2 gnd ground 3 1 3 ce chip enable pin (active ?h?) 4 5 1 v in input pin ? 2 4 nc no connection *tab is gnd level. (they are connected to the reverse side of this ic. the tab is better to be connected to the gnd, but leaving it open is also acceptable. absolute maximum ratings rating symbol value unit input voltage (note 1) v in 6.0 v output voltage v out ? 0.3 to v in + 0.3 v chip enable input v ce ? 0.3 to 6.0 v output current i out 400 ma power dissipation udfn1010 p d 400 mw power dissipation sc ? 70 380 power dissipation sot23 420 junction temperature t j ? 40 to 150 c storage temperature t stg ? 55 to 125 c esd capability, human body model (note 2) esd hbm 2000 v esd capability, machine model (note 2) esd mm 200 v stresses exceeding maximum ratings may damage the device. maximum ratings are stress ratings only. functional operation above t he recommended operating conditions is not implied. extended exposure to stresses above the recommended operating conditions may af fect device reliability. 1. refer to electrical characteristis and application information for safe operating area. 2. this device series incorporates esd protection and is tested by the following methods: esd human body model tested per aec ? q100 ? 002 (eia/jesd22 ? a114) esd machine model tested per aec ? q100 ? 003 (eia/jesd22 ? a115) latchup current maximum rating tested per jedec standard: jesd78.
NCP4683 http://onsemi.com 3 thermal characteristics rating symbol value unit thermal characteristics, udfn 1.0 x 1.0 mm thermal resistance, junction ? to ? air r  ja 250 c/w thermal characteristics, sot23 thermal resistance, junction ? to ? air r  ja 238 c/w thermal characteristics, sc ? 70 thermal resistance, junction ? to ? air r  ja 263 c/w electrical characteristics ? 40 c t a 85 c; v in = v out(nom) + 1 v or 2.5 v, whichever is greater; i out = 1 ma, c in = c out = 1.0  f, unless otherwise noted. typical values are at t a = +25 c. parameter test conditions symbol min typ max unit operating input voltage v in 1.40 5.25 v output voltage t a = +25 c v out 2.0 v v out x0.99 x1.01 v v out < 2.0 v ? 20 20 mv ? 40 c t a 85 c v out 2.0 v x0.97 x1.03 v v out < 2.0 v ? 60 60 mv output voltage temp. coefficient ? 40 c t a 85 c  v out /  t a 80 ppm/ c line regulation v out(nom) + 0.5 v v in 5.0 v line reg 0.02 0.10 %/v load regulation i out = 1 ma to 300 ma load reg 15 40 mv dropout voltage i out = 300 ma v out = 0.8 v v do 0.56 0.72 v v out = 0.9 v 0.51 0.65 1.0 v v out < 1.2 v 0.46 0.59 1.2 v v out < 1.4 v 0.39 0.50 1.4 v v out < 1.7 v 0.35 0.44 1.7 v v out < 2.1 v 0.30 0.39 2.1 v v out < 2.5 v 0.26 0.34 2.5 v v out < 3.0 v 0.25 0.30 3.0 v v out < 3.6 v 0.22 0.29 output current i out 300 ma short current limit v out = 0 v i sc 60 ma quiescent current i q 50 75  a standby current v ce = 0 v, t a = 25 c i stb 0.1 1.0  a ce pin threshold voltage ce input voltage ?h? v ceh 1.0 v ce input voltage ?l? v cel 0.4 ce pull down current i cepd 0.3  a power supply rejection ratio v in = v out + 1 v or v in = 3 v,  v in = 0.2 v pk ? pk , i out = 30 ma, f = 1 khz psrr 65 db output noise voltage f = 10 hz to 100 khz, i out = 30 ma, v out = 1.2 v, v in = 3.2 v v n 65  v rms low output nch tr. on resistance v in = 4 v, v ce = 0 v, d version only r low 50 
NCP4683 http://onsemi.com 4 typical characteristics figure 3. output voltage vs. output current 1.2 v version (t j = 25  c) i out (ma) v out (v) v in = 5.25 v 4.2 v 5.0 v 3.6 v 3.5 v 2.2 v 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 0 100 200 300 400 500 600 700 v out (v) i out (ma) figure 4. output voltage vs. output current 1.8 v version (t j = 25  c) v in = 5.25 v 4.2 v 5.0 v 2.8 v 2.8 v 0 0.5 1.0 1.5 2.0 2.5 3.0 0 100 200 300 400 500 600 700 figure 5. output voltage vs. output current 2.8 v version (t j = 25  c) i out (ma) v out (v) 3.8 v v in = 5.25 v 4.2 v 5.0 v 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 0 100 200 300 400 500 600 700 figure 6. output voltage vs. output current 3.3 v version (t j = 25  c) i out (ma) v in = 5.25 v 5.0 v 4.3 v i out (ma) v do (v) figure 7. dropout voltage vs. output current 1.2 v version v out (v) t j = 85 c 25 c ? 40 c i out (ma) figure 8. dropout voltage vs. output current 1.8 v version 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 0 100 200 300 400 500 600 700 t j = 85 c 25 c ? 40 c v do (v) 0 0.1 0.2 0.3 0.4 0.5 0 50 100 150 200 250 300 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0 50 100 150 200 250 300
NCP4683 http://onsemi.com 5 typical characteristics v do (v) t j = 85 c 25 c ? 40 c i out (ma) figure 9. dropout voltage vs. output current 2.8 v version i out (ma) figure 10. dropout voltage vs. output current 3.3 v version t j = 85 c 25 c ? 40 c v do (v) 1.15 1.16 1.17 1.18 1.19 1.20 1.21 1.22 1.23 1.24 1.25 ? 40 ? 200 20406080 t j , junction temperature ( c) v out (v) figure 11. output voltage vs. temperature, 1.2 v version v in = 2.2 v 1.75 1.76 1.77 1.78 1.79 1.80 1.81 1.82 1.83 1.84 1.85 t j , junction temperature ( c) figure 12. output voltage vs. temperature, 1.8 v version v out (v) ? 40 ? 200 20406080 v in = 2.8 v 2.75 2.76 2.77 2.78 2.79 2.80 2.81 2.82 2.83 2.84 2.85 t j , junction temperature ( c) v out (v) figure 13. output voltage vs. temperature, 2.8 v version v in = 3.8 v ? 40 ? 200 20406080 3.25 3.26 3.27 3.28 3.29 3.30 3.31 3.32 3.33 3.34 3.35 t j , junction temperature ( c) figure 14. output voltage vs. temperature, 3.3 v version v out (v) ? 40 ? 200 20406080 v in = 4.3 v 0 0.05 0.10 0.15 0.20 0.25 0 50 100 150 200 250 300 0 0.05 0.10 0.15 0.20 0.25 0 50 100 150 200 250 300
NCP4683 http://onsemi.com 6 typical characteristics 0 10 20 30 40 50 60 70 012345 i gnd (  a) v in , input voltage (v) figure 15. supply current vs. input voltage, 1.2 v version 0 10 20 30 40 50 60 70 012345 v in , input voltage (v) figure 16. supply current vs. input voltage, 1.8 v version i gnd (  a) 0 10 20 30 40 50 60 70 012345 i gnd (  a) v in , input voltage (v) figure 17. supply current vs. input voltage, 2.8 v version 0 10 20 30 40 50 60 70 012345 v in , input voltage (v) figure 18. supply current vs. input voltage, 3.3 v version i gnd (  a) 0 10 20 30 40 50 60 70 40 20 0 20 40 60 80 i gnd (  a) t j , junction temperature ( c) figure 19. supply current vs. temperature, 1.2 v version v in = 2.2 v 0 10 20 30 40 50 60 70 i gnd (  a) t j , junction temperature ( c) figure 20. supply current vs. temperature, 1.8 v version 40 20 0 20 40 60 80 v in = 2.8 v
NCP4683 http://onsemi.com 7 typical characteristics 0 10 20 30 40 50 60 70 i gnd (  a) t j , junction temperature ( c) figure 21. supply current vs. temperature, 2.8 v version v in = 3.8 v 40 20 0 20 40 60 80 0 10 20 30 40 50 60 70 t j , junction temperature ( c) figure 22. supply current vs. temperature, 3.3 v version 40 20 0 20 40 60 80 i gnd (  a) v in = 4.3 v 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 012345 v in , input voltage (v) i out = 50 ma 30 ma 1 ma figure 23. output voltage vs. input voltage, 1.2 v version v out (v) 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 012345 v in , input voltage (v) figure 24. output voltage vs. input voltage, 1.8 v version v out (v) i out = 50 ma 30 ma 1 ma 0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 012345 v in , input voltage (v) figure 25. output voltage vs. input voltage, 2.8 v version v out (v) i out = 50 ma 30 ma 1 ma 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 012345 v in , input voltage (v) figure 26. output voltage vs. input voltage, 3.3 v version v out (v) i out = 50 ma 30 ma 1 ma
NCP4683 http://onsemi.com 8 typical characteristics figure 27. psrr, 1.2 v version, v in = 3.0 v 0 10 20 30 40 50 60 70 80 90 100 0.1 1 10 100 1000 psrr (db) frequency (khz) i out = 1 ma 30 ma 150 ma figure 28. psrr, 1.8 v version, v in = 3.0 v 0 10 20 30 40 50 60 70 80 90 100 0.1 1 10 100 1000 frequency (khz) psrr (db) i out = 1 ma 30 ma 150 ma figure 29. psrr, 2.8 v version, v in = 3.8 v 0 10 20 30 40 50 60 70 80 90 100 0.1 1 10 100 1000 psrr (db) frequency (khz) i out = 1 ma 30 ma 150 ma figure 30. psrr, 3.3 v version, v in = 4.3 v 0 10 20 30 40 50 60 70 80 90 100 0.1 1 10 100 1000 frequency (khz) psrr (db) i out = 1 ma 30 ma 150 ma figure 31. output voltage noise, 1.2 v version, v in = 2.2 v 0 0.5 1.0 1.5 2.0 2.5 3.0 0.01 0.1 1 10 100 1000 v n (  v rms / hz ) frequency (khz) figure 32. output voltage noise, 1.8 v version, v in = 2.8 v 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 v n (  v rms / hz ) frequency (khz) 0.01 0.1 1 10 100 1000
NCP4683 http://onsemi.com 9 typical characteristics figure 33. output voltage noise, 2.8 v version, v in = 3.8 v 0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 0.01 0.1 1 10 100 1000 v n (  v rms / hz ) frequency (khz) figure 34. output voltage noise, 3.3 v version, v in = 4.3 v 0 2.0 4.0 6.0 8.0 10 12 14 16 18 0.01 0.1 1 10 100 1000 v n (  v rms / hz ) frequency (khz) figure 35. line transients, 1.2 v version, t r = t f = 5  s, i out = 30 ma 1.185 1.190 1.195 1.200 1.205 1.210 0 40 80 120 160 200 240 280 320 360 400 2.2 2.7 3.2 3.7 v out (v) t (  s) v in (v) figure 36. line transients, 1.8 v version, t r = t f = 5  s, i out = 30 ma 1.785 1.790 1.795 1.800 1.805 1.810 0 40 80 120 160 200 240 280 320 360 400 2.8 3.3 3.8 4.3 v out (v) v in (v) t (  s)
NCP4683 http://onsemi.com 10 typical characteristics figure 37. line transients, 2.8 v version, t r = t f = 5  s, i out = 30 ma 2.785 2.790 2.795 2.800 2.805 2.810 0 40 80 120 160 200 240 280 320 360 400 3.8 4.3 4.8 5.3 v out (v) v in (v) t (  s) figure 38. line transients, 3.3 v version, t r = t f = 5  s, i out = 30 ma 3.285 3.290 3.295 3.300 3.305 3.310 0 40 80 120 160 200 240 280 320 360 400 4.3 4.8 5.3 5.8 v out (v) v in (v) t (  s) figure 39. load transients, 1.2 v version, i out = 1 ? 30 ma, t r = t f = 0.5  s, v in = 1.8 v 1.17 1.18 1.19 1.20 1.21 1.22 0 40 80 120 160 200 240 280 320 360 400 0 15 30 45 v out (v) i out (ma) t (  s)
NCP4683 http://onsemi.com 11 typical characteristics figure 40. load transients, 1.8 v version, i out = 1 ? 30 ma, t r = t f = 0.5  s, v in = 2.8 v 1.77 1.78 1.79 1.80 1.81 1.82 0 40 80 120 160 200 240 280 320 360 400 0 15 30 45 v out (v) i out (ma) t (  s) figure 41. load transients, 2.8 v version, i out = 1 ? 30 ma, t r = t f = 0.5  s, v in = 3.8 v 2.77 2.78 2.79 2.80 2.81 2.82 0 40 80 120 160 200 240 280 320 360 400 0 15 30 45 v out (v) i out (ma) t (  s) figure 42. load transients, 3.3 v version, i out = 1 ? 30 ma, t r = t f = 0.5  s, v in = 4.3 v 3.27 3.28 3.29 3.30 3.31 3.32 0 40 80 120 160 200 240 280 320 360 400 0 15 30 45 v out (v) i out (ma) t (  s)
NCP4683 http://onsemi.com 12 typical characteristics figure 43. load transients, 1.2 v version, i out = 50 ? 100 ma, t r = t f = 0.5  s, v in = 1.8 v 1.185 1.190 1.195 1.200 1.205 1.210 1.215 0 40 80 120 160 200 240 280 320 360 400 0 50 100 150 v out (v) i out (ma) t (  s) figure 44. load transients, 1.8 v version, i out = 50 ? 100 ma, t r = t f = 0.5  s, v in = 2.8 v 1.785 1.790 1.795 1.800 1.805 1.810 1.815 0 40 80 120 160 200 240 280 320 360 400 0 50 100 150 v out (v) i out (ma) t (  s) figure 45. load transients, 2.8 v version, i out = 50 ? 100 ma, t r = t f = 0.5  s, v in = 3.8 v 2.785 2.790 2.795 2.800 2.805 2.810 2.815 0 40 80 120 160 200 240 280 320 360 400 0 50 100 150 v out (v) i out (ma) t (  s)
NCP4683 http://onsemi.com 13 typical characteristics figure 46. load transients, 3.3 v version, i out = 50 ? 100 ma, t r = t f = 0.5  s, v in = 4.3 v 3.285 3.290 3.295 3.300 3.305 3.310 3.315 0 40 80 120 160 200 240 280 320 360 400 0 50 100 150 v out (v) i out (ma) t (  s) figure 47. load transients, 1.2 v version, i out = 1 ? 300 ma, t r = t f = 0.5  s, v in = 2.2 v 1.05 1.10 1.15 1.20 1.25 1.30 0 40 80 120 160 200 240 280 320 360 400 0 150 300 450 v out (v) i out (ma) t (  s) 1.65 1.70 1.75 1.80 1.85 1.90 0 40 80 120 160 200 240 280 320 360 400 0 150 300 450 figure 48. load transients, 1.8 v version, i out = 1 ? 300 ma, t r = t f = 0.5  s, v in = 2.8 v v out (v) i out (ma) t (  s)
NCP4683 http://onsemi.com 14 typical characteristics figure 49. load transients, 2.8 v version, i out = 1 ? 300 ma, t r = t f = 0.5  s, v in = 3.8 v 2.65 2.70 2.75 2.80 2.85 2.90 0 40 80 120 160 200 240 280 320 360 400 0 150 300 450 v out (v) i out (ma) t (  s) figure 50. load transients, 3.3 v version, i out = 1 ? 300 ma, t r = t f = 0.5  s, v in = 4.3 v 3.15 3.20 3.25 3.30 3.35 3.40 0 40 80 120 160 200 240 280 320 360 400 0 150 300 450 v out (v) i out (ma) t (  s) figure 51. start ? up, 1.2 v version, v in = 2.2 v ? 0.5 0 0.5 1.0 1.5 0 20 40 60 80 100 120 140 160 180 200 0 1 2 3 v out (v) t (  s) v ce (v) chip enable i out = 300 ma i out = 30 ma i out = 1 ma
NCP4683 http://onsemi.com 15 typical characteristics figure 52. start ? up, 1.8 v version, v in = 2.8 v ? 0.5 0 0.5 1.0 1.5 0 20 40 60 80 100 120 140 160 180 200 0 1 2 3 v out (v) t (  s) v ce (v) chip enable i out = 300 ma i out = 30 ma i out = 1 ma ? 0.5 0 0.5 1.0 1.5 2.0 2.5 3.0 0 20 40 60 80 100 120 140 160 180 200 0 2 4 6 figure 53. start ? up, 2.8 v version, v in = 3.8 v v out (v) t (  s) v ce (v) chip enable i out = 300 ma i out = 30 ma i out = 1 ma figure 54. start ? up, 3.3 v version, v in = 4.3 v ? 1.0 0 1.0 2.0 3.0 4.0 0 20 40 60 80 100 120 140 160 180 200 0 2 4 6 v out (v) t (  s) v ce (v) i out = 300 ma i out = 1 ma i out = 30 ma chip enable
NCP4683 http://onsemi.com 16 typical characteristics figure 55. shutdown, 1.2 v version b, v in = 2.2 v ? 0.5 0 0.5 1.0 1.5 2.0 012345678910 0 1 2 3 v out (v) t (ms) v ce (v) i out = 300 ma i out = 1 ma i out = 30 ma chip enable figure 56. shutdown, 1.8 v version d, v in = 2.8 v ? 0.5 0 0.5 1.0 1.5 2.0 0 100 200 300 400 500 600 700 800 900 1000 0 1 2 3 v out (v) t (  s) v ce (v) i out = 300 ma i out = 1 ma i out = 30 ma chip enable figure 57. shutdown, 2.8 v version d, v in = 3.8 v ? 1.0 0 1.0 2.0 3.0 4.0 0 100 200 300 400 500 600 700 800 900 1000 0 2 4 6 v out (v) t (  s) v ce (v) i out = 300 ma i out = 1 ma i out = 30 ma chip enable
NCP4683 http://onsemi.com 17 typical characteristics figure 58. shutdown, 3.3 v version d, v in = 4.3 v ? 1.0 0 1.0 2.0 3.0 4.0 0 100 200 300 400 500 600 700 800 900 1000 0 2 4 6 v out (v) t (  s) v ce (v) i out = 300 ma i out = 1 ma i out = 30 ma chip enable application information a typical application circuit for NCP4683 series is shown in figure 59. vin vout ce gnd c1 c2 vin vout NCP4683x 1  1  figure 59. typical application schematic input decoupling capacitor (c1) a 1  f ceramic input decoupling capacitor should be connected as close as possible to the input and ground pin of the NCP4683. higher values and lower esr improves line transient response. output decoupling capacitor (c2) a 1  f ceramic output decoupling capacitor is enough to achieve stable operation of the ic. if a tantalum capacitor is used, and its esr is high, loop oscillation may result. the capacitors should be connected as close as possible to the output and ground pins. larger values and lower esr improves dynamic parameters. enable operation the enable pin ce may be used for turning the regulator on and off. the ic is switched on when a high level voltage is applied to the ce pin. the enable pin has an internal pull down current source. if the enable function is not needed connect ce pin to vin. current limit this regulator includes fold ? back type current limit circuit. this type of protection doesn?t limit current up to current capability in normal operation, but when over current occurs, output voltage and current decrease until over current condition ends. typical characteristics of this protection type can be observed in the output voltage vs. output current graphs shown in the typical characteristics chapter of this datasheet. output discharger the d version includes a transistor between vout and gnd that is used for faster discharging of the output capacitor. this function is activated when the ic goes into disable mode. thermal as power across the ic increase, it might become necessary to provide some thermal relief. the maximum power dissipation supported by the device is dependent upon board design and layout. mounting pad configuration on the pcb, the board material, and also the ambient temperature affect the rate of temperature increase for the part. when the device has good thermal conductivity through t he pcb the junction temperature will be relatively low in high power dissipation applications. pcb layout make the vin and gnd line as large as practical. if their impedance is high, noise pickup or unstable operation may result. connect capacitors c1 and c2 as close as possible to the ic, and make wiring as short as possible.
NCP4683 http://onsemi.com 18 ordering information device nominal output voltage description marking package shipping ? NCP4683dmu12tcg 1.20 auto discharge q4 udfn4 (pb ? free) 10000 / tape & reel NCP4683dmu18tcg 1.80 auto discharge r0 udfn4 (pb ? free) 10000 / tape & reel NCP4683dmu185tcg 1.85 auto discharge t0 udfn4 (pb ? free) 10000 / tape & reel NCP4683dmu285tcg 2.85 auto discharge t1 udfn4 (pb ? free) 10000 / tape & reel NCP4683dmu31tcg 3.1 auto discharge s3 udfn4 (pb ? free) 10000 / tape & reel NCP4683hmu12tcg 1.20 standard l4 udfn4 (pb ? free) 10000 / tape & reel NCP4683hmu185tcg 1.85 standard p0 udfn4 (pb ? free) 10000 / tape & reel NCP4683dsq18t1g 1.80 auto discharge ah18 sc ? 70 (pb ? free) 3000 / tape & reel NCP4683dsq28t1g 2.80 auto discharge ah28 sc ? 70 (pb ? free) 3000 / tape & reel NCP4683dsq33t1g 3.30 auto discharge ah33 sc ? 70 (pb ? free) 3000 / tape & reel ?for information on tape and reel specifications, includin g part orientation and tap e sizes, please refer to our tape and reel packaging spe- cifications brochure, brd8011/d. *marking codes for xdfn0808 packages are unified. **to order other package and voltage variants, please contact your on semiconductor sales representative.
NCP4683 http://onsemi.com 19 package dimensions sot ? 23 5 ? lead case 1212 issue a dim min max millimeters a1 0.00 0.10 a2 1.00 1.30 b 0.30 0.50 c 0.10 0.25 d 2.70 3.10 e 2.50 3.10 e1 1.50 1.80 e 0.95 bsc l l1 0.45 0.75 notes: 1. dimensioning and tolerancing per asme y14.5m, 1994. 2. controlling dimensions: millimeters. 3. datum c is the seating plane. a 1 5 23 4 d e1 b l1 e e c m 0.10 c s b s a b 5x a2 a1 s 0.05 c l 0.20 --- *for additional information on our pb ? free strategy and soldering details, please download the on semiconductor soldering and mounting techniques reference manual, solderrm/d. soldering footprint* 0.95 dimensions: millimeters pitch 5x 3.30 0.56 5x 0.85 a --- 1.45 recommended a
NCP4683 http://onsemi.com 20 package dimensions notes: 1. dimensioning and tolerancing per ansi y14.5m, 1982. 2. controlling dimension: inch. 3. 419a ? 01 obsolete. new standard 419a ? 02. 4. dimensions a and b do not include mold flash, protrusions, or gate burrs. dim a min max min max millimeters 1.80 2.20 0.071 0.087 inches b 1.15 1.35 0.045 0.053 c 0.80 1.10 0.031 0.043 d 0.10 0.30 0.004 0.012 g 0.65 bsc 0.026 bsc h --- 0.10 --- 0.004 j 0.10 0.25 0.004 0.010 k 0.10 0.30 0.004 0.012 n 0.20 ref 0.008 ref s 2.00 2.20 0.079 0.087 b 0.2 (0.008) mm 12 3 4 5 a g s d 5 pl h c n j k ? b ? sc ? 88a (sc ? 70 ? 5/sot ? 353) case 419a ? 02 issue k
NCP4683 http://onsemi.com 21 package dimensions udfn4 1.0x1.0, 0.65p case 517br issue o notes: 1. dimensioning and tolerancing per asme y14.5m, 1994. 2. controlling dimension: millimeters. 3. dimension b applies to plated terminal and is measured between 0.15 and 0.20 mm from terminal. 4. coplanarity applies to the exposed pad as well as the terminals. a b e d d2 bottom view b e 4x note 3 2x 0.05 c pin one reference top view 2x 0.05 c a a1 (a3) 0.05 c 0.05 c c seating plane side view l 3x 1 2 dim min max millimeters a ??? 0.60 a1 0.00 0.05 a3 0.10 ref b 0.20 0.30 d 1.00 bsc d2 0.43 0.53 e 1.00 bsc e 0.65 bsc l 0.20 0.30 l2 0.27 0.37 *for additional information on our pb ? free strategy and soldering details, please download the on semiconductor soldering and mounting techniques reference manual, solderrm/d. mounting footprint* detail a 1.30 0.30 0.53 4x dimensions: millimeters 0.52 2x recommended package outline l2 detail a l3 detail b l3 0.02 0.12 detail b note 4 e/2 d2 45  a m 0.05 b c 4 3 0.65 pitch 4x typ c 0.18 0.23 4x 0.43 3x 0.10 3x on semiconductor and are registered trademarks of semiconductor components industries, llc (scillc). scillc reserves the right to mak e changes without further notice to any products herein. scillc makes no warranty, representation or guarantee regarding the suitability of its products for an y particular purpose, nor does scillc assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including wi thout limitation special, consequential or incidental damages. ?typical? parameters which may be provided in scillc data sheets and/or specifications can and do vary in different application s and actual performance may vary over time. all operating parameters, including ?typicals? must be validated for each customer application by customer?s technical experts. scillc does not convey any license under its patent rights nor the rights of others. scillc products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the scillc product could create a sit uation where personal injury or death may occur. should buyer purchase or use scillc products for any such unintended or unauthorized application, buyer shall indemnify and hold scillc and its of ficers, employees, subsidiaries, af filiates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, direct ly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that scillc was negligent regarding the design or manufacture of the part. scillc is an equal opportunity/affirmative action employer. this literature is subject to all applicable copyright laws and is not for resale in any manner. publication ordering information n. american technical support : 800 ? 282 ? 9855 toll free usa/canada europe, middle east and africa technical support: phone: 421 33 790 2910 japan customer focus center phone: 81 ? 3 ? 5817 ? 1050 NCP4683/d literature fulfillment : literature distribution center for on semiconductor p.o. box 5163, denver, colorado 80217 usa phone : 303 ? 675 ? 2175 or 800 ? 344 ? 3860 toll free usa/canada fax : 303 ? 675 ? 2176 or 800 ? 344 ? 3867 toll free usa/canada email : orderlit@onsemi.com on semiconductor website : www.onsemi.com order literature : http://www.onsemi.com/orderlit for additional information, please contact your local sales representative


▲Up To Search▲   

 
Price & Availability of NCP4683

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X